On coderivatives and lipschitzian properties of the dual pair in optimization
Autor/es: López, Marco A. ; Ridolfi, Andrea B. ; Vera de Serio, Virginia N. ;
Autor/es: López, Marco A. ; Ridolfi, Andrea B. ; Vera de Serio, Virginia N. ;
Fecha: 2011
In this paper we apply the concept of coderivative and other tools from the generalized di§erentiation theory for set-valued mappings to study the stability of the
feasible sets of both, the primal and the dual problem in infinite-dimensional linear
optimization with infinitely many explicit constraints and an additional conic constraint. After providing some specific duality results for our dual pair, we study the
Lipschitz-like property of both mappings and also give bounds for the associated
Lipschitz moduli. The situation for the dual shows much more involved than the
case of the primal problem.
Este contenido se encuentra
publicado en
políticas de Acceso Abierto, bajo licencias
Creative Commons 3.0 - Algunos Derechos
Reservados