Denoising y descompresión conjuntos de imágenes usando redes neuronales convolucionales como regularizadores
Autor/es: González, Mario ;
Autor/es: González, Mario ;
Fecha: 2018
Está asociado al evento : Jornadas de Jóvenes Investigadores AUGM (26º : 2018 : Mendoza, Argentina)
Colaboradores:
Orientador/a:
González, Mario
Orientador/a:
Musé, Pablo
Los esquemas de compresión wavelet tales como el JPEG2000 o el standard CCSDS (para satélites de muy alta resolución) llevan a la aparición de artefactos visuales muy específicos debido a la cuantificación de los coeficientes wavelet. Éstos tienen una estructura espacial muy correlacionada que hace que sean difíciles de remover por algoritmos de denoising clásicos.
En este trabajo, proponemos un esquema de denoising y descompresión conjuntos, basado en plug-and-play ADMM, que combina un término de ajuste a datos que modela la cuantificación de coeficientes wavelet y un prior de imágenes naturales implícito contenido en una red neuronal convolucional de denoising del estado del arte
Este contenido se encuentra
publicado en
políticas de Acceso Abierto, bajo licencias
Creative Commons 3.0 - Algunos Derechos
Reservados